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Chapter 2 CVE Critique: Technology, Design and Usability  

 

 

 
 

“Communication systems shape social organisations because they 

structure temporal and spatial relationships.”  

 

                        Harold Innis, precursor of McLuhan, in 

Mattellart and Mattelart, (1998).
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Chapter 2 CVE Critique: Technology, Design and Usability 

This chapter consists of four distinct sections that critically review CVE technology, 

design, usability, and a number of existing CVEs respectively.  

 

2.1 Introduction 

This chapter places CVE technology, design, usability and existing CVEs, in context 

within the larger fields of Information Technology (IT), computer science design 

practise, human computer interface (HCI) design practise, and commercially available 

CVEs. It is by no means exhaustive in its description of all aspects of these fields, but 

rather considers in pertinent detail each of the issues that have an impact on the 

usability of CVEs. This approach has been adopted in order to clearly identify the 

state-of-the-art limitations of networked, graphical, communication technology, 

design approaches, usability evaluation approaches, and available CVEs, at the time 

this thesis was produced. Furthermore, it describes and discusses the ramifications 

and consequences of these limitations on the design of collaboration support for 

CVEs. The aim of this chapter is to identify the issues that are relevant to the support 

of real-time collaboration over distance as mediated by CVEs, describe the types of 

collaboration that are supported, identify the design choices that are shape CVEs, 

describe the evaluation issues that exist for CVEs, and discuss the effect of these 

limitations on the usability of CVE technology.  

 

The next section presents the general field of IT, and places CVE technology in it 

(2.2), followed by a section that describes design practise and how this influences 

CVE design (2.3), a section that describes usability design practise and how this 



  Chapter 2 

 18 

impacts on usability design for CVEs (2.4), and a section that describes a number of 

existing CVEs (2.5). This is followed by some conclusions (2.6), which highlight and 

summarize the state-of-the-art limitations of CVE technology.  

 

2.2 CVE Technology in Context 

This section places CVE technology in context within the larger field of Information 

Technology (IT). It is by no means exhaustive in its description of all communication 

technologies, but rather considers in pertinent detail each of the headings and sub-

headings under which CVE technology falls. This approach has been adopted in order 

to clearly identify the state-of-the-art limitations of networked, graphical, audio and 

video communication technology on the development of CVE technology, at the time 

this thesis was produced. Furthermore, it describes and discusses the ramifications 

and consequences of the computational bottlenecks on the design of collaboration 

support for CVEs. The aim of this section is to identify CSCW technologies that 

support real-time collaboration over distance, describe the types of collaboration that 

are supported, compare their success, and discuss the effect of the technical 

limitations on the usability of these communication technologies in general and CVE 

technology specifically.  

 

The next section presents the general field of IT and places CVE technology in 

context (2.2.1), followed a section that describes other fields under which CVE 

technology may be classified (2.2.2). This is followed a section that describes and 

discusses the state-of-the-art limitations of networked, graphical, audio and video 

communication technology where they create bottlenecks on the design of 

collaboration support for CVEs (2.2.3). The discussion evaluates the previous sections 
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in order to summarise the technological framework that demarcates the issues under 

research in this study (2.2.4).  

 

2.2.1 CVE Technology in Information Technology Context 

CVE technology can be said to be part of the group of technologies called Information 

Technology (IT). The rapid development of IT is one of the focal points in the 

European research and development (R&D) market, and indeed in the world. The 

concept of the „Information Society‟ has been officially formulated by the European 

commission to address issues of concern, such as the social implications of the large-

scale deployment of new information and communication technologies (Chester, 

1998). To this purpose, VR technology is specifically singled out (along with „agent 

technology‟ - intelligent software that assists people and can act on their behalf) as an 

area for the pressing need for research and debate on issues of morality, privacy, 

personal identity, and possible fundamental changes to what makes up a human 

society. Obviously, the range of topics involved in such research and debate is too 

wide to be encompassed in this thesis, but where possible the author has pointed out 

issues raising from the research reported here, which could be pertinent to the 

concerns of the European Commission.  

 

Within the general field of IT exists a group of technologies called Computer 

Mediated Communication (CMC). CMC addresses the use of an application computer 

to control interactive media and message-based communication to provide more 

effective ways of doing things. Whether or not a new technology provides better ways 

of doing things depends on an understanding of the old work practice, an 

understanding of the new work practice, and an understanding of how the new 

technology shapes and supports the new work practice. Such understanding does not 
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evolve overnight, but rather grows through multi-disciplinary debate and research, 

involving computer scientists (hardware and software engineers), sociologists, 

psychologists, ergonomists, artists and philosophers, users of the new technology, etc. 

CVE technology is specifically put forward as a means to improve our work practices. 

Firstly, because it supports real-time interaction over distance, which could reduce the 

need to physically travel to meetings. Secondly, it supports both formal and informal 

interaction within the same application, which should mimic the settings of a real 

meeting more closely than other teleconferencing technologies can provide. Thirdly, 

users can control their own viewpoint in the virtual world instead of having a static 

view. Finally, CVE users can directly interact on shared documents inside the same 

virtual world, thus mimicking real world settings for collaborative work through 

shared artefacts more closely than other teleconferencing technologies. However, it is 

by no means clear yet how well CVE technology provides these improvements, 

whether it allows sufficient and satisfactory collaboration over distance, nor how it 

influences and changes our work practice. This thesis addresses these issues from 

both a psychological and software engineering angle, in order to explore subjective 

user satisfaction and objective task improvements. 

 

CVE technology is also part of a group of technologies called Computer Supported 

Cooperative Work (CSCW) technology. CSCW applications aim to support groups of 

users in their work as a group using one or more digitalized media as the 

communication platform, by taking into account all work patterns and the effect of the 

technology on the workplace, workflow, and the user and user-group as a whole 

within the workplace (Beaudouin-Lafon, 1999). There are notable exceptions to this 

classification; for instance, some multi-user VEs have been developed to support 
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collaborative and competitive gaming instead of work. However, it can be argued that 

even these types of VEs have to include support for interaction and coordination 

between users. There are two reasons why it is useful to deal with CVE technology as 

a particular instance of CSCW technology. Firstly, pigeonholing CVE technology 

within the larger field of CSCW should allow us to apply the CSCW knowledge base 

to the task of understanding collaboration for CVEs, because it is precisely the 

support for cooperative work in CVEs that is still poorly understood. And secondly, 

the technical underpinnings of both technologies are shaped by the same 

requirements: supporting distributed users to perform collaborative tasks through an 

understanding of the visible and invisible work practices.  

 

CSCW applications can support three different general types of activities: 

communication, cooperation, and coordination (see table 2.1). Depending on the 

design of the application it can support one or more of these activities. Sometimes, 

support for these activities is built implicitly into more pragmatic applications, such as 

digital libraries, electronic commerce, knowledge management and distance learning, 

which are said to include CSCW principles within a larger context (Dix, et al., 1998). 

The same is true for CVE applications, which in principle can support all these 

activities and more, but only if the CVE has been designed to do so. In all cases, the 

development process for these new technologies should follow the same software 

engineering structure (requirements gathering, design, evaluation and deployment). In 

particular, the types of activities that need to be supported, the kind of work process 

into which they are to be incorporated, and the effect the new technology has on the 

work-flow, has to be carefully made more explicit through debate, research and 

development.  
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Type of Activity Type of Support 

Communication Direct interpersonal communication by electronic mail, voice mail, 

audio conferencing, video conferencing and desktop conferencing. 

Cooperation Ideas generation and decision-making by means of message databases, 

document databases and meeting facilitation. 

Coordination Sharing computer objects to control business process modelling, 

workflow management, project management, calendaring, and 

scheduling. 

Table 2.1: CSCW applications can support three different general types of activities: 

communication, cooperation, and coordination. 

 

2.2.2 Groupware Technology 

One major area in CSCW is the design of computer applications to support group 

working. These systems are often called groupware. Groupware is software designed 

to support the collaboration of several users. Groupware systems usually involve 

several receivers/senders connected by a network. Groupware technology can be 

divided into asynchronous and synchronous applications (see figure 2.1). 

Asynchronous systems facilitate delayed interaction on shared objects. Asynchronous 

groupware includes email, bulletin boards, non real time database sharing, fax and 

postal services. Synchronous systems allow remote users to interact at the same time. 

Synchronous groupware includes audio conferencing, video conferencing, desktop 

conferencing, and media spaces. 
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Groupware 

Synchronous Asynchronous 

Electronic Mail 

Bulletin Boards 

Audio Conferencing 

Video Conferencing 

Fax 

Postal Services 

Non-real time Data Base 

Sharing 

 Desktop 

Conferencing 

Collaborative Virtual 

Environments 

Media Space 

Conferencing 

 

Figure 2.1: CVE technology supports synchronous interaction between users. 

 

To be precise, groupware technology can be classified according to the location and 

timing of the collaborative activity: 

 

- Where it happens: groupware users can be collocated (same place) or remote 

(other place).  

- When it happens: groupware users can be using the system synchronously (at 

the same time) or asynchronously (at different times). 

 

This classification can be made more obvious by using the time/space matrix 

illustration (see figure 2.2). The space axis of the time/space matrix refers to 
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geographical location of the users, and the time axis refers to whether or not the users‟ 

collaboration takes place at the same time.  

Different Place 
(Remote) 

Same Place 
(Collocated) 

Same Time 
(Real-time) 

Different Time 
(Non real-time) 

Face-to-
face 
Interaction 

Asynchronous 
Interaction 

Synchronous 
Distributed 
Interaction 

Asynchronous 
Distributed 
Interaction 

 

Figure 2.2: Time/space matrix. (adapted from Dix et al, 1998). 

 

CVE applications specifically aim to support collaboration between geographically 

remote users, and thus belong to the „Synchronous Distributed Interaction‟ cell in the 

time/space matrix. Although it could be argued that, theoretically, CVE users could be 

collocated, in practice this gives all kinds of problems because users sitting next to 

each other can hear each other in the real room before they can hear each other in the 

virtual space, and problems of auditory feedback, echo‟s and delay occur in such 

settings.  

 

In addition to CVEs there are other types of systems which support synchronous 

distributed interaction. These include: several types of conferencing systems, such as 

audio conferencing, video conferencing, desktop conferencing, media spaces, where 

the primary focus is on communication; group editors, where the primary focus of the 

application is on shared document editing; shared drawing surfaces, where the 
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primary focus is on collaborative remote design; and group decision support systems, 

where the primary focus is on generation and recording of ideas and decisions.  

 

Cooperation between synchronous distributed users takes place via the application 

and its success depends entirely upon the control and feedback it provides. 

Participants communicate with one another as they work and may need to use tools 

and work objects to support their collaboration. Users need to build and maintain a 

common awareness and understanding of the participants involved in the cooperation 

and the shared objects on which they work. These objects are the „artefacts of work‟ 

and they constitute an important part of the collaboration process. The application 

needs to help the participants to identify who is communicating to whom, and in the 

case of shared artefacts how to control them and who is controlling the artefact at any 

particular time.  

 

CVEs are different from other synchronous distributed systems in that users are 

generally represented by a virtual embodiment which the user controls, instead of by a 

cursor or pointer. This embodiment makes visible their interaction on shared objects 

and direct communication with other users within a „realistic‟ shared virtual space, 

which becomes their common medium of communication.  

 

2.3.1 Synchronous Distributed Groupware Technology 

Synchronous groupware technologies aim to allow multiple users to collaborate 

together in real-time on a certain task. Several distinctive kinds of synchronous 

groupware can be defined: 

 

- Audio conferencing: voice only, group telephone lines. 
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- Video conferencing: visual and voice, group video lines.  

- Media space conferencing: visual, voice, shared documents, group video lines, 

multiple viewpoints. 

- Desktop conferencing: simple text, visual, voice and shared documents. 

- Virtual conferencing (CVE technology): simple text, voice, computer 

generated collaborative virtual spaces, virtual embodiments, shared 

documents, multiple viewpoints. 

 

Workplace studies have shown that communication and collaboration are dependent 

on the ability of personnel to use and refer to aspects of shared objects (Goodwin and 

Goodwin, 1996; Hindmarch and Heath, 2000a). Indeed there seems to be a trend to 

increasingly provide workers with enhanced access to each other‟ spaces and include 

objects for sharing during collaboration. (Gaver, et al, 1993; Kuzuoka, Kosuge, and 

Tanaka, 1994; Tang, Isaacs, and Rua, 1994; Heath et al, 1995, Benford et al, 1997, 

Reynard et al, 1998). Audio conferencing, groups working over telephone systems, is 

notoriously difficult to manage (Walters, 1995). In principle, large audio conferences 

can be established, but it becomes difficult to ascertain who is talking when more than 

four or five simultaneous users are involved. Video conferencing has been a natural 

extension of audio conferencing, allowing for the inclusion of facial expressions and a 

limited set of gestures to be part of the group interaction. However, for video 

conferencing, dialogues have been found to be significantly longer, with more 

interruptions, than for audio conferencing, particularly when transmission is delayed 

(O‟Malley, Langton, Anderson, Doherty-Sneddon and Bruce, 1996). Also, sharing 

documents is still a problem because participants could not see when and where in the 

document was being pointed at (Heath and Luff, 1991). Research has shown that it is 
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important for participants involved in group work to be able to establish a general 

awareness of what others are doing, especially while they are working on individual 

focussed tasks (Hughes, et al., 1992). To provide support for this kind of peripheral 

awareness more video cameras have been added, this has led to the birth of yet 

another type of conferencing technology, referred to as media space technology. 

Media space technology is essentially video conferencing with additional video 

cameras aimed at documents and workspaces, which makes it possible to include 

shared document views, and give an increased awareness of the video conference 

participants‟ background to the other participants (Gaver et al., 1993). However, 

participants still have difficulties working together because the separate, fixed 

cameras leave gaps in the view offered of the remote space, which means that gaze 

direction, and gaze awareness which play a vital role in „normal‟ communication are 

not sufficiently supported. For instance, participants found it difficult to ascertain 

which aspects of their own activities and workspace were visible to their colleagues 

(Heath, Luff and Sellen, 1995). 

 

Desktop conferencing refers to systems that allow all users to synchronously interact 

with each other via their personal computer. It allows them to share information in 

one or more forms, from simple text, documents, audio, facial expressions and a 

limited set of gestures to simultaneous editing of visually displayed data. The 

exchange of simple text messages is achieved through the use of electronic chat 

programs, which provide typed, real-time communication between two or more 

people. All messages are recorded and displayed to all chat participants 

simultaneously. However, because it is possible for all participants to type at the same 

time, discussions often become confusing. The more participants that are actively 
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involved in the discussion, the harder it becomes to keep track of who is replying to 

whom and to check whether one has understood the messages as intended.  

 

Desktop conferencing systems often include shared applications and artefacts, such as 

editors and drawing programs, which allow a team to display a common document 

and simultaneously work on the contents. The keystrokes and mouse movements done 

on one screen appear on the screens of all other participants. However, these systems 

have inherent problems in that the system may not include a direct communication 

channel between the participants. Also, it may be hard to attain a common 

understanding of what exactly is being looked at or referred to because participants 

may be looking at different parts of the document and refer to views the others may 

not be sharing at that moment. Some desktop conferencing systems provide video and 

audio links between all participants, who are all displayed in small windows on the 

screen and they are all able to talk to each other. However, sending full motion video 

information to multiple participants requires high bandwidth connections, which may 

not be available, and for each added user more bandwidth is required. Additionally, it 

is difficult to display more than a dozen video windows on a single desktop computer 

screen, thus effectively limiting the number of simultaneous users.  

 

Virtual conferencing involves the use of CVE technology to create a 3D computer 

generated graphical multi-user meeting space. Sometimes virtual conferencing is 

referred to as virtual desktop conferencing, or even simply desktop conferencing, 

because some CVEs are developed for desktop use only, as opposed to immersively 

through the use of a head mounted display. Throughout this thesis „CVE technology‟ 

and „virtual conferencing‟ refer to desktop CVEs only, unless otherwise stated. 
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However, virtual conferencing is different from desktop conferencing in that all 

human-human interaction takes place inside a single application, whereas a desktop 

conferencing system can often consist of several different applications used 

simultaneously that are all controlled individually, from the computer desktop. 

However, sometimes CVEs make use of external applications to aid and supplement 

the collaboration support provided by the CVE, which makes it difficult to use as an 

immersive application, because head mounted displays have such low resolution that 

normal text, for example, is often difficult to read. 

 

CVEs provide a shared environment, through which users can navigate and thus 

adjust and fine tune their own viewpoint. Their movements and gaze direction are 

visible to the other users, thus allowing cues for peripheral awareness to each other 

(Benford et.al, 1995). Finally, users should in principle be able to refer to objects 

spatially, thus allowing them to refer to shared objects quite naturally. In these 

respects CVEs provide advantages over video conferencing and media space systems. 

However, at present CVEs do suffer from some serious limitations. Desktop CVE 

systems generally offer a small field of view (50 degrees) compared to the size of our 

real field of view (120 degrees), thus making support for peripheral awareness more 

complicated than it would seem (Hindmarch et.al, 1998). Real world information, 

such as users‟ real gaze direction and real facial expressions, are not automatically 

displayed in the virtual world, thus losing the richness of interaction that video 

conferencing allows. Finally, the virtual world, the objects in it and the virtual 

embodiments are at present depicted using crude graphical representations with often 

limited functionality, in order to keep the computational demands of the CVE on the 

network as low as possible and the number of users it can support simultaneously as 
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high as possible. These scalability issues have repercussions on the usability of the 

CVE.  

 

Mediating Technology Definition Known Problems 

Audio conferencing Group working over telephone 

systems 

Difficult to ascertain who is 

talking. 

No way to share documents in 

real time. 

Video conferencing Group working via video 

connections. Inclusion of facial 

expressions and a limited set of 

gestures. 

Dialogues significantly longer 

more interruptions. 

Problem sharing documents 

because of lack of detail. 

Media space conferencing Video conferencing with 

additional video cameras aimed 

at documents and workspaces. 

Fixed cameras leave gaps in the 

view of the remote space. 

Difficult to make sense of 

colleagues’ conduct. 

Desktop conferencing Group working via a hybrid of 

technologies incorporated into 

one or more software 

applications that the users can 

run from their computer 

desktops. 

Users cannot control remote 

video cameras.  

Difficult to deal with multiple 

windows.  

Variable delays on interaction in 

the different applications. 

Users cannot point from one 

application to another because 

this is not visible to other users. 

Virtual Conferencing (CVE 

technology) 

Group working via a shared 

computer generated graphical 

space with avatars representing 

participants. 

Field of view limited. 

Object interaction and 

navigation clumsy. 

Limited set of gestures. 

Lack of facial expressions. 

Table 2.2: Historical overview of remote conferencing technologies. 

 

In summary, all CSCW technologies discussed above suffer from limitations in the 

support for collaboration introduced by the technology itself. Hindmarch (1997) 

argues that the relative weakness of these systems to support synchronous remote 
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groupware derives from their inability to assist individuals in working flexibly with 

documents, models and other workplace artefacts. Table 2.2 summarizes the 

synchronous distributed technologies and their known usability problems. Now 

follows a section that identifies and discusses the technological bottlenecks imposed 

on synchronous distributed technologies in general and CVE technology in particular, 

in order to clearly point out the limitations they cause.  

 

2.2.3 Bottle necks for distributed synchronous groupware 

Synchronous groupware is particularly difficult to design due to limited bandwidth 

and delays on the network used to connect the receivers and senders (Chambers, 

Duce, and Jones, 1984). The response time between an action of a user and the 

reception of the action to all users runs the danger of being too long or too variable to 

be usable. The number of total simultaneous users runs the danger of being too high to 

be usable, and must be monitored to avoid problems. 

 

Multi-user systems are more fragile because of the large numbers of hardware, 

software, and human operator components. The complexity of the algorithms 

increases with each added user, making groupware highly error prone. A single failure 

can propagate throughout the whole system. Interleaving of different user‟s actions 

associated with the unpredictable effects of network delays can easily create system 

errors and confusion amongst the users. Many faults will only be discovered when 

more users than predicted are using the system in ways that were not anticipated.  
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The limitations of currently available networked, graphical, audio and video 

communication technology that impact on the development of CVE technology (c.f. 

Macedonia and Zyda, 1997) are discussed below:  

 

- Computational consistency problems (2.2.3.1);  

- Concurrency control problems (2.2.3.2); 

- Scalability problems (2.2.3.3); 

- Robustness problems (2.2.3.4); 

- Network delay problems (2.2.3.5).  

 

These problems are frequently mentioned in CVE research and development literature 

(Greenhalgh, 1999), and cause considerable trouble for CVE developers, CVE 

usability testers, and CVE users. As such they are of great importance, because they 

shape and limit the design space and design choices for CVEs. 

 

2.2.3.1 Computational Consistency Problems 

Consistency maintenance refers to the requirement that multiple clients should be 

enabled to concurrently access and change shared data in the shared application, and 

the fact that all other clients have to be informed of these changes immediately, and in 

the same sequence as they occur, so that consistency of the shared data is maintained 

between all clients. There are several important types of consistency, such as update 

consistency, replication consistency, cache consistency, failure consistency, clock 

consistency, and user interface consistency. Consistency problems in CVEs occur 

when information about the positions and actions of user‟s virtual embodiments arrive 

in a different order, or with an unacceptable delay at other users computers. Typical 
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solutions for consistency maintenance are caching, and the employment of hypotheses 

of locality in the pattern of user references to data. Caching refers to a mechanism, 

implemented by software in the client computer, for the retention in the client‟s 

environment of a copy of the data values for subsequent reuse, avoiding the need to 

request them again when the same resource is accessed subsequently. Hypotheses of 

locality are used to define locality models, which attempt to predict the minimum 

amount of data that needs to be updated in order to maintain consistency for a 

particular user, with regard to the activities and position of that user. 

 

2.2.3.2 Concurrency Control Problems 

Typically, users of collaborative applications can input and output data concurrently. 

Problems occur when two or more users simultaneously access and modify the same 

data, because this would create a conflict about the actual state of the data. Therefore, 

the application must have concurrency control mechanisms to stop the different user‟s 

actions from interfering with that of others. Typical concurrency control mechanisms 

are locking, floor control, and to some extent social protocols. Locking refers to the 

principle that when one user starts to modify a certain data-set, no other user is 

allowed to modify the same data-set at the same time. Floor control policies determine 

which user can modify a data-set at any moment, and social protocol generally 

develops when users gain experience with negotiating control over data-sets, 

especially when locking or floor control mechanisms cannot be used. For concurrency 

control mechanisms to work effectively, the application has to be decomposed into all 

possible threads of action invoked by different users. Subsequently all threads which 

can potentially be executed concurrently need to be identified and enabled, while all 

others need to be locked. This is called the maximal-concurrent approach, and it is a 
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tedious and error prone task, which is also highly application dependent. As a result 

different architectures may take different approaches to concurrency control, with 

different final degrees of concurrency.  

 

2.2.3.3 Scalability Problems 

Scalability refers to the continued ability of the application to service its users while 

the number of users and/or the user activity increases. Scalability problems typically 

occur because with the addition of each new user to the system, the amount of data 

that needs to be sent to all users increases, thus rapidly creating larger and larger 

processing, bandwidth and memory demands. Scalability problems can only be 

detected when system development and testing includes a carefully controlled 

increase in the number of users and user activities. Solutions to scalability problems 

for CVEs include the notion that users need only be updated about changes in the 

virtual environment that are in the scope of their awareness and/or interaction, thus 

decreasing the amount of data that has to be send to all users. Other solutions include 

decreasing the level of detail with which the virtual environment and the objects in it 

appear to the user, based on the distance between them and the user, which lowers the 

amount of data that has to be sent to each user.  

 

2.2.3.4 Robustness Problems 

Robustness refers to the ability of the application to handle computational errors and 

network delays without crashing. Four potential sources of problems are: failures in 

the network, workstation or operating system; errors in programming the shared 

application; unforeseen sequences of events, inability of the system to scale as the 

number of users or rate of activity increases (Dix, et al., 1998). There are factors that 
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make multi-user systems more fragile. For instance, multi-user systems typically 

employ a larger number of hardware and software components than single-user 

systems, the algorithms used for groupware are more complicated, and network 

delays can have unpredictable effects on the applications. Errors may not become 

apparent until the application is used by large amounts of users in realistic settings, 

and the consequences of a failure can propagate throughout the whole system, 

destroying the work of a whole group of people. The typical solutions for robustness 

problems are too far into the field of computer science to be of relevance here, but 

perhaps needless to say, the robustness of an application needs to be systematically 

and thoroughly tested before commencing any usability test in order to avoid running 

into high costs and frustration due to the number of experimental subjects which have 

to be kept standing by and coordinated until the system is up and running again.   

 

2.2.3.5 Network Delay Problems 

Groupware systems generally involve several computers connected by a network. The 

results of actions of one user have to be fed back to that user and fed through to the 

other users. This feedback and feedthrough includes transmission over the network. 

Network traffic is subject to unpredictable delays, because the available network 

bandwidth is shared by multiple users. Limited bandwidth and delays of the network 

can cause unacceptable delays on feedback and feedthrough of user actions. Unless 

the input of a user is processed and the changes transmitted quickly enough to give 

the user the impression of an instantaneous change, the user becomes aware of the 

„lag‟ or network delay. Measurements show that a delay of less than 0.1 second must 

be achieved in order to produce the impression of continuous interaction when using 

modern graphical interfaces (Coulouris et al, 1995). When editing text, a delay of 
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more than a fraction of a second between typing and the appearance of characters is 

unacceptable (Dix et al, 1998). Rapid feedback to the user who initiated an action is 

necessary, but the feedthrough to the other users also suffers from lag. Lags on 

feedthrough of more than a few seconds can be disastrous for conversations. A delay 

of 200 msec on the auditory feedback of the user‟s own speech creates impossible 

problems for the speaker (van Leyden Sr., 1984). The typical solutions for network 

delay problems in CVEs are to make use of a combination of peer-to-peer 

communication between the machines of each user, client-server communication that 

distributes the computational tasks over several machines, and multi-server 

architecture that allows a number of servers to cooperate to accommodate a larger 

number of clients. A more detailed description of these solutions will carry too far 

into the field of computer science to be of relevance here, but clearly any design for 

CVEs must take potential network delays very seriously.  

 

2.2.4 Discussion 

The computational bottlenecks for CVE technology have been identified above. A 

summary is provided in table 2.3. The main focus of the discussion has been on how 

these bottlenecks affect application behaviour and ultimately the users of CVE 

systems.  

 

Technological 

Challenges 

Definition Known Solutions 

Computational 

consistency problems 

Information about the positions 

and actions of CVE users arrive 

delayed, and or in a different order 

at other user’s computers. 

Caching; locality of reference 

Concurrency control Two or more users simultaneously Locking, floor control, social 
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problems access and modify the same data, 

creating computational conflicts 

about the actual state of the data 

protocol 

Scalability problems The amount of data that needs to 

be send to all users demands more 

processing power, bandwidth 

and/or memory than available. 

Take future scaling of the system 

into account at the beginning of 

the project.  

Scoping of awareness and 

interaction. 

Level of detail management. 

Robustness problems Crashing of the whole system due 

to inability of the application to 

handle computational errors and 

network delays. 

Employ modular and defensive 

programming.  

Logging of application 

communications to trace and 

recreate errors. 

Systematic and thorough testing 

before commencing any usability 

test. 

Network delay problems Limited bandwidth and delays of 

the network cause unacceptable 

delays on feedback and 

feedthrough of user actions. 

Combination of peer-to-peer 

communication, client-server 

communication, and multi-server 

architectures. 

Table 2.3: Summary of computational bottlenecks for CVE technology. 

 

There are two issues, which arise from the description of the computational 

bottlenecks that warrant further discussion: solutions for scalability problems and 

solutions for reciprocity problems. Solutions to scalability problems are generally 

sought by reducing the polygon count of the graphics, and by optimising the 

efficiency with which the data stream is sent across the network. The design choices 

that are made to arrive at these solutions have a large impact on the way a CVE 
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behaves and thus on the final usability of the CVE system. In the next section (section 

two) an analysis is made of CVE design practise and the consequences of these 

practises for usability measurements, and usability as such. Solutions for reciprocity 

problems push the design of CVEs towards a faithful reproduction of our real world, 

in order to allow us to use our everyday skills to conduct collaboration in a virtual 

environment. This push also has consequences for the current CVE design practise 

discussed in the next section (2.3). Additionally, reciprocity problems will be 

alleviated through the development of user experience. An experienced user has a 

better understanding of the limitations of a CVE interface, and will be able to 

understand the interface struggles of inexperienced users more quickly than vice 

versa.  

 

2.3 CVE Design Practise in Context 

This section places CVE design in context within the larger field of computer science 

design practise, and the general field of Human-Computer Interface design (HCI). It is 

by no means exhaustive in its description of all design activities, but rather considers 

in pertinent detail each of the issues that seem to shape CVE design practise. This 

approach has been adopted in order to clearly identify the assumptions that are made 

about how CVEs should be designed, at the time this thesis was produced. 

Furthermore, it describes and discusses the ramifications and consequences of these 

design choices for the directions of development for CVEs. The aim of this section is 

to identify all the design choices that shape the CVEs of today, describe the type of 

choices that have to be made, and discuss the effect of these choices on the usability 

of CVE technology.  
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The next part presents the direct manipulation interaction paradigm (2.3.1), followed 

by parts that describe how data simplification affects design (2.3.2), how the general 

trend to prototype CVEs affects design choice (2.3.3), and how increases in 

bandwidth increase expectations of the technology even though the design still takes 

place within performance constraints dictated by the low-end users (2.3.4). This is 

followed by a discussion of the impact of current design practise on CVE design 

(2.3.5). 

 

2.3.1 Direct Manipulation 

Interface design is, amongst other things, concerned with making computer 

applications easy to use for humans. As computer technology has developed, and the 

interface design paradigm evolved from command line interfaces to icon and menu-

based windows systems. The notion of „direct manipulation‟ became the central 

interface design principle (Norman, 1988, Shneiderman, 1992; Preece et. al., 1994; 

Dix et. al., 1998). Direct manipulation refers to the idea that by representing data as 

visible, recognisable objects, it will make it easier for the user to recognise, 

understand and interact with that data than by applying more or less abstract 

commands. Whether the objects created for direct manipulation are simple 2.5D icons 

or 3D animated agents, their effectiveness relies on their resemblance to real-world 

objects, actions and newly developed metaphors. Consequently, interaction design in 

the 1990s has taken place within a generally accepted interaction framework based on 

real-world metaphors. Typically, the interface is thought of as a world in itself, a 

„world-in-miniature‟ where the user can act and which changes state in response to 

user actions, thus relying on what is known as the model-world metaphor (Dix et al. 

1998). It comes as no surprise that most CVE designs are based on this model-world 

metaphor too. Where CVEs are to support real world interaction, CVEs are designed 
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to look and behave like the real world. Realistic representation is expected to allow 

the transfer of conceptual real-world knowledge to the interface. However obvious a 

solution this may seem, there are some important issues that are easily overlooked. 

One of the first problems is that it is not known whether realistic virtual environments 

allow effective transfer of real-world knowledge. The visual representation may be 

misleading; users may grasp the analogical representation rapidly, but draw incorrect 

conclusions about permissible actions. A second problem is that it is not known 

whether realistic representations provide the easiest way of interacting with the CVE. 

The interaction required to achieve the correct results may be more complicated to 

perform in a CVE than in the real world. A third problem is that it is possible to create 

objects and actions in a CVE that have no real-world counterpart. Choosing the right 

metaphors to represent such objects and actions is not an easy task (Benyon and Imaz, 

1999). 

 

2.3.1.1 Hidden Assumptions: Creating Realistic CVEs 

Hidden assumptions are not uncommon in any design tradition (Hollnagel, 1993). 

Implicit in the documentation of VR development projects is the claim that the added 

value of CVEs is that they are more intuitive to use (c.f. Bricken, 1991). If these 

implicit assumptions are made explicit they can be formulated as the following 

deduction to reveal the prevailing design fallacy (COVEN, Del. 3.5, 1997): 

 

a. CVEs are realistic by making use of interactive 3D representations updated in 

real time, and 

b. Realistic interfaces are intuitive.  

From a) and b) follows: 

c. CVEs are intuitive. 
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CVEs will not automatically be intuitive, unless they have been specifically designed 

to be intuitive; a CVE is not in and of itself intuitive. The expectation that CVEs will 

be inherently intuitive, may have something to do with the slow advance of the 

development of guidelines for CVE evaluation and design.  

 

The task of designing realistic CVEs is affected in a number of ways. A first problem 

is that as 3D representations become more realistic, they demand more bandwidth and 

processing power. However, current CVE technology is developed within limited 

bandwidth and processing specifications. A second problem is that realistic 

representations lead the user to expect to be able to use all permissible actions that are 

available in the real world. However, to design all permissible real-world actions in a 

CVE involves a lot of time and effort; often more than is available in the CVE 

development life-cycle or project goals. This often means that realistic interfaces 

become less than intuitive to use. A third problem is that because CVEs are assumed 

to be intrinsically intuitive to use, any user problems are assumed to be solved by user 

training, user experience and the development of new social protocols. However, this 

resulting process of deferring the task of finding solutions to user problems to the 

users does not seem to be commonly acknowledged so far. It may well be that in 

some cases a much better interface design could be found by rethinking the original 

assumption of realism leading to intuitiveness. Inventing new interaction paradigms 

surely will not benefit from development based on hidden or uncertain assumptions 

about what is good, and this is why the author has tried to exemplify how the current 

interaction paradigm a priori affects CVE development.  
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2.3.1.2 Disciplinary Matrix 

For the scientific research community a paradigm is a collection of theories, 

descriptions of successful research, assumptions, values and norms, which govern the 

style and the type of research and development that is conducted. It is a source of 

examples for junior researchers, of successful solutions found by applying the 

paradigm to problems. It could be said to be the disciplinary matrix, which contains 

all the knowledge, the generalisations, specific explanations, theories and 

complementary concepts needed to address these issues (Groot, ibid). The disciplinary 

matrix, firstly consists of the terminology and basic concepts that are used to describe 

and reason about the topic of research. This terminology and basic concepts are then 

used to formulate hypotheses, which can be put to the test. Developing a new 

technology involves the invention of new words and concepts, new working models, 

prototypes and theories. In fact it was noted in an American research report into the 

scientific research challenges of virtual reality (Durlach and Mavor, ibid) that there 

were no precise and generally accepted definitions of the terms used in VR 

technology development yet, and this is still largely true to date. It may seem obvious 

that such a task involves the integration of different kinds of knowledge and expertise. 

Traditionally, large software applications are developed in design teams consisting 

minimally of an application programmer, a domain expert, a usability researcher, and 

increasingly more often some representative users. HCI expertise and ultimately 

interface design guidelines are based on an integration of knowledge from such 

different disciplines as computer science, artificial intelligence, linguistics, 

philosophy, sociology, anthropology, design, engineering, ergonomics and human 

factors, social and organisational psychology, and cognitive psychology. Similarly, 

CVE research and development ought to benefit from this interdisciplinary approach. 
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However, it has to be noted that there has been a lack in thorough usability testing of 

CVE design so far, and partly due to this, a lack in the availability of integrated 

systematic knowledge about CVE design (Wilson, Eastgate, and D.Cruz, 1998; 

Johnson, 1998; Hix, Swan, Gabbard, McGee, Durban and King, 1999).  

 

Amongst the reasons why usability testing of CVE design has been less than desirable 

considering the present HCI traditions are that the CVE developers of today have no 

more knowledge of interface design than is available through their course curriculum 

which is based on traditional software engineering techniques (Newman and 

Lemming, 1995; Sutcliffe, 1995; Wickens, Gordan and Liu, 1998). However, a lack 

of usage of these techniques has been observed in general (Landauer, 1995) and 

amongst VR developers (Wilson et al, 1998). Interviews, carried out by the author and 

others (see Chapter 6), have revealed that VR designers do not employ the readily 

available HCI knowledge that does exist today (Kaur, 1998). Another reason why 

usability testing of CVE design has been less than desirable, considering the present 

HCI tradition, is that the development of CVE technology is still in its early stages. 

The development of prototypes has to be based on a certain type of testing, but the 

assumptions on which CVE research and development are based, seem to be derived 

from the push of technology and not so much, as yet, from the pull of the users. A 

third reason why usability testing of CVE design has been less than desirable 

considering the present HCI tradition is that the different disciplines involved in 

building CVE applications each have their own terminology and concepts. In order 

for multi disciplinary teams to work together, they have to bridge this „multi 

disciplinary gap‟ (Grudin, J., 1993). This gap is partly caused by the different 

disciplinary matrices with their complementary terminologies, partly by the ignorance 
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about the limitations of each respective discipline by members of the other 

disciplines, and partly by uncontrollable factors such as the social impact of 

interdisciplinary work, the social impact of the new technology when introduced into 

society, and the social impact of the challenge this new technology places on current 

understanding of technology and design. Uncontrollable factors need to be observed, 

documented and analysed for us to have a better understanding of them. Sociologists 

have made this their field of expertise within CVE research and development. 

Ignorance about the limitations of each respective discipline by members of the other 

disciplines is solved by synergistic teamwork and the application of a systematic 

development methodology such as the traditional software engineering methods 

advocated by the HCI literature. Finally, acknowledging and analysing the multi 

disciplinary language gap could be used to stimulate instead of confuse the debate 

between disciplines, a process deliberately started at CVE‟96, followed by CVE‟98 

and CVE2000.  

 

2.3.2 Simplifying Data-Exchange 

Any design process is governed by trade-off decision making that should satisfy 

certain requirements (Norman, 1988; Howard, 1977, Smets and Overbeeke, 1995). 

This is also true for CVE interface design. The author conducted interviews with five 

CVE designers about their design practice during the COVEN project (the interviews 

are presented in Chapter 6). A basic form of analytical induction was used to draw 

conclusions from these interviews. This led the author to formulate their design 

practise as a continuous trade-off between the following two constraints:  

 

i) A human constraint: the CVE has to be effective and intuitive. 
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ii) A machine constraint: the CVE has to utilise minimum computational load 

and network traffic.  

 

The solutions to satisfy these two constraints seem to be respectively:  

 

i) Use of realistic representations to allow users to transfer their everyday 

knowledge to the CVE. 

ii) Simplification of representations and functionality to stay within performance 

parameters.  

 

These solutions are conflicting in that by making objects realistic this also introduces 

the suggestion of available actions on objects that are probably not supported in the 

CVE, because the objects have been simplified in either their representation or 

functionality or both. This conflict introduces a potential for usability-breakdown. 

However, to make things worse, synchronous distributed groupware has to satisfy the 

performance constraints of the technology it is based on so stringently, that these 

trade-off design choices are very often made first in favour of the machine constraint 

and only then on the human constraint. Especially because CVE development is still 

in its early stages, the basic technology has to be developed first in order to have a test 

application for CVE usability. It has to be noted that these early design choices shape 

and obscure our thinking and expectations of what a CVE interface can or should do. 

For every CVE development project those early design choices ought to be carefully 

documented in order to be able to rethink these choices after usability testing.  
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During the longitudinal usage evaluation of the COVEN platform design activities the 

author deduced four general decision trade-off areas. Table 2.4 structures this 

information and lists for each category a number of specific usability problems that 

were found during the usability evaluations. 

 

Trade-off Decision 

Area 

Category of CVE Usability 

Problem 

Usability Problems 

Prototype development 

vs. 

Demonstrable 

applications 

Hardware/Network/Software 

Problems 

Lack of functionality. 

Latency in performance.  

Poor display quality. 

Run-time performance 

vs. 

User performance 

System Problems Usability solutions not automatically 

device independent. 

Users with slow connection quickly 

judged to be uncooperative, users with a 

fast connection quickly judged to be 

uncollaborative. 

‘High-end users’ judged as higher in 

status, competence and trustworthiness 

than ‘low-end users’. 

Object representation 

vs. 

Affordance 

representation 

Application Problems Meaning of objects within the 

environment not clear. 

Apparent or unapparent availability of 

actions not obvious. 

Realism vs. simplification choices based 

on performance constraints only. 

Presence & co-

presence 

vs. 

Minimalist design 

Interface Problems Interaction struggles in 3D space, such as: 

navigating in 3D space; 

picking of 3D objects; 

positioning precisely. 

Table 2.4: Decision trade-off dimensions for CVE design and associated usability 

problems. 

 

To summarise, there are CVE specific problems caused by technological limitations, 

latency, 3D interaction, and realism that affect both machine constraints and human 
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constraints in all kinds of different ways. As a result, the real challenge for CVE 

researchers is to “prioritise specific user and application needs and then to find ways 

of supporting them within a limited computing resource” (Bowers, Pycock, and 

O'Brien, 1996). 

 

2.3.3 Prototyping 

Requirements for an interactive system cannot be completely specified from the 

beginning of the lifecycle (Dix et al.,1998). The only way to be sure about features of 

the potential design is to build them and test them out on real users in a realistic 

setting. This is not a problem unique to CVE design, but the issue is raised here 

specifically because CVE design suffers greatly from this problem due to its novel 3D 

interaction paradigm. Instead, it is a general software engineering problem, which is 

tackled by applying a systematic usability engineering technique called iterative 

design, and an accompanying software engineering technique called prototyping. 

Iterative design is a purposeful design process that tries to overcome the inherent 

problems of incomplete requirement specification by cycling through several designs, 

incrementally improving on the final product with each pass. Prototyping is an 

engineering tradition used to demonstrate the iterative design choices. CVE 

prototyping is characterised by its evolutionary style, by which is meant that it is often 

a compromise between the production of a demonstrable application and a throw-

away design exercise. The final system evolves from a very limited initial version to 

its final release as a demonstrator. The initial versions are limited in that they tend to 

concentrate on some aspects of the interactive system and ignore others, thus only 

providing partial functionality. CVE systems today tend to be vertical prototypes, in 

that they contain all of the high level and low level functionality, but for a restricted 
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part of the system, in order to be a demonstrator of novel basic functionality. 

Generally, the interaction is so free and flexible that CVE systems tend to be 

intrinsically unsupportive. CVE prototypes are often created incrementally, allowing 

large systems to be installed in phases. Early on the design team agrees on the core 

features, and a skeleton system is developed as soon as possible, or an underlying 

partially developed CVE engine and programming environment are used as a starting 

point for the iterative design process.  

 

So far, rapid prototyping of CVEs is a rather informal process, and testing takes place 

amongst colleagues, often of the same professional background, or by virtue of the 

designers trying things out themselves. This has a number of consequences. Firstly, 

the effectiveness of the iterative design process is influenced, because the design is 

being modelled within a closed professional culture, on other professionals of the 

same discipline. This makes it more difficult for outsiders to gain a detailed 

understanding, and to share the available usability knowledge, and thus might 

contribute to the discipline gap introduced in the paragraphs about the disciplinary 

matrix (2.8.2). Indeed, VR programmers have been found to make little use of 

usability manuals because they do not readily apply to their design problems (Kaur, 

1998). Another consequence is that this type of rapid development and manipulation 

is mistaken for rushed evaluation, which might lead to erroneous results and 

invalidate the only advantage of using a prototype in the first place (Dix, ibid). A third 

consequence is that it is likely that wrong design decisions are made at the beginning, 

which remain part of the design because designers tend to dislike discarding work in 

which they have invested time (Dix et al., 1998). Finally, there are CVE specific 

problems for the usability testing process. A certain number and type of interaction 
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features have to be sacrificed during the rapid development of a prototype. There is 

often limited attention as to which features are left out why, and how this influences 

the overall usability of the system. 

 

2.3.4 Increased Bandwidth over Time 

As computers become faster, either model complexity (the number of polygons used) 

or the update rates, can increase, but rarely both. For instance, at the start of CVE 

technology development most applications would only run on Silicon Graphics 

machines, but as time has gone on, more and more CVE systems run on low-end PCs. 

It is imperative to develop CVE applications that will run on a wide range of 

operating systems if CVE technology is to be accepted by consumers and businesses 

alike. However, in order to create usable, scaleable CVEs one has to work from the 

premise that there will always be a limit to available computing communications 

resources. There is a great potential demand for CVE technology, judged by the 

popularity of multi-user games accessible via the Internet, and the emerging 

interactive TV CVEs developed for interactive multi user cyber dramas (Murray, 

1997).  

 

2.3.5 Discussion 

Over the past years CVE interface design has become a separate academic subject 

within the field of HCI. It has been suggested that possibly new interaction paradigms 

are needed to design effective CVE interaction. However, it is by no means clear yet 

what these should be. New design technologies and philosophies introduce new 

problems and hypotheses. Solutions of these problems or the acquisition of new 

knowledge sometimes lead to adaptations of a current or standard disciplinary matrix, 
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other times it leads to the invention of a new disciplinary matrix and subsequently a 

shift in paradigm. Whether CVE technology demands a paradigm shift is open to 

debate, but since CVE technology allows it users to do new things, in new ways, 

researchers have to be aware that possibly not all CVE interaction design problems 

can be solved using the current interaction design paradigm. 

 

2.4 CVE Usability in Context 

This section places CVE usability in context within the general field of HCI design. It 

is by no means exhaustive in its description of all usability models, methods or 

techniques, but rather considers in detail each of the relevant issues that shape CVE 

usability activities. This approach has been adopted in order to clearly identify the 

current conceptual model that governs how CVEs should be tested for usability. 

Furthermore, it describes and discusses the application of usability engineering 

methods to CVEs. The aim of this section is to give an overview of the evaluation 

issues that exist for the CVEs of today, describe the type of design and evaluation 

answers that are needed, and discuss the open issues as regards usability for CVE 

technology.  

 

The next section presents the current usability paradigm (section 2.4.1), followed by 

sections that describe which traditional usability engineering methods apply to CVE 

development and how these usability engineering methods structure the choice of 

validation criteria with which to measure usability for CVEs (section 2.4.2), how a 

structured scientific approach guides the formulation of validation criteria and 

conceptual models help to structure the usability evaluation in an empirical fashion 
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(2.4.3), and a conclusion describing what kind of validation criteria and conceptual 

model could apply to CVEs (section 2.4.4).  

 

2.4.1 Technological Change: Changing Design Needs 

The term Human-Computer Interaction was adopted in the mid 1980s as a means of 

describing a new field of study concerned with the design, evaluation and 

implementation of interactive computing systems for human use and with the 

investigation of major phenomena surrounding them (ACM SIGCHI, 1992). During 

the past 20 years, HCI knowledge and methods have been expanded, refined and 

adapted to keep up with the rapid changes in the underlying technology.  

 

Computers are becoming smaller, faster, cheaper, more popular and more often 

interconnected. These new and improved hardware and software technologies open up 

new challenges for HCI. VR technology, and particularly that supporting CVEs, poses 

such a challenge (Stone, 1993). Never before were humans able to share the same 

virtual space, move about freely, interact with shared virtual objects, and „hear‟ and 

„see‟ each other in real-time. The current analogies employed to think about this new 

technology are paradigms from the realms of theatre, movie making, comic design, 

architecture, mathematics, interactive storytelling, role-playing, and audio-video 

conferencing. It is also based on the collective experiences of the early virtual 

communities based at certain fixed sites using bulletin board style communication, 

and multi user dungeons (Rheingold, 1994). Instead of addressing the interface 

between human and computer, it would seem that HCI now also needs to address, 

what the author would like to call the “inter-space”, the space between users in the 

virtual environment, or the interaction that is supposed to take place inside that space 
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and how to represent those actions. Complex social interactions are represented 

through an impoverished medium, which may have serious consequences for the 

usability of the designs (Brown and Duguid, 1994). However, it has been found that 

CVE users perceived the CVE as a social space and interpret the occurrences in this 

virtual social space similar to those encountered in real spaces (Jeffrey and Mark, 

1998). Although this thesis focuses on the social interactions in the virtual space, it 

does not exclude the objects in the virtual environment and the CVE itself from the 

analysis of those social interactions.  

 

 
 

 

Figure 2.3: The fastness of CVE space (pictures from Snowdon, 1996). 

 

Under focus is the idea of a social interspace, and the artefacts through which social 

interaction in a CVE is achieved. Illustrations such as figure 2.3, show the vast virtual 
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space, with a number of virtual embodiments in it representing other active users, and 

different types of data objects, representing something in a structured way to the 

users. The users can manipulate the objects and discuss them whilst observing the 

objects and each other. Thus, we are concerned here with the social space that is 

created inside the CVE.  

 

This means that this thesis is not directly concerned with the interface to the virtual 

environment, nor with the input/output technologies, nor with the presentation of new 

usability methods for CVE, although during the COVEN project the author of this 

thesis was involved in the development of guideline documents discussed in more 

detail in Chapter 9, Section 9.3.4. Rather this thesis concerns itself with the 

application of HCI principles and methods to the design and evaluation of social 

interaction and collaboration in CVEs.  

 

All HCI takes place within a social and organizational context and this tradition is 

followed in the research reported in this thesis. Findings contributing to knowledge of 

the social and organisational impact of developing and using CVEs, in terms of 

practical CVE design activities are clearly noted in the text, as their collection and 

dissemination are one of the goals of this thesis.  

 

Another goal of HCI is to carefully allocate tasks between humans and machines, 

making sure that those activities that are creative and non-routine are given to people 

and those that are repetitive and routine are allocated to machines (Preece et al., 

1994). At the time of writing there is no particular consensus as to precisely how this 

allocution is accomplished for CVEs, or why, and many tasks that could be automated 
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are still left to the user. As CVE technology progresses more tasks will be automated, 

and one of the goals that this thesis aims to satisfy is to find such tasks suitable for 

automation, and make suggestions as to how this could be accomplished. This thesis 

aims to identify heuristics that could help CVE designers decide how to allocate CVE 

tasks between users and system in a systematic informed manner. 

 

The author proposes a model of CVEs as consisting of several functional space-time 

layers of types of data (see figure 2.4). Firstly, there is an architectural layer, the 

actual lay-out of the space and adjoining or connected spaces. Secondly, there is a 

semantic layer; the actual meaning of the spaces, objects and actions in the VE, which 

the designers are trying to convey to the users. Thirdly, there is the social layer; this is 

the ability of the VE to connect one user with the other users occupying the same VE, 

by means of text, audio, visual, and other information cues. Finally, there is a 

temporal aspect to the whole CVE experience, which refers to the fact that the CVE is 

experienced over time.  
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Figure 2.4: Functional layers of generic CVE
1
. 

 

In combination, these layers make up the CVE space as presented to the user. 

However, the total CVE interaction experience is also influenced by: 

 

- The input/output media;  

- The interface controls to the input/output media;  

- The fidelity of the computational machinery and its communication network;  

- The other users and the effectiveness of the interactions with them;  

- The organisational settings or physically surrounding space and goings-on of 

each user; 

- The social background and expectations of each user.  

                                                 
1
 Pictures draw by Damian Schofield. 
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This thesis is specifically focussed on the social layer, and the collaboration activities, 

which can be observed in this space.  

 

2.4.2 Usability Engineering in General 

Usability engineering takes place alongside systems engineering in a general process 

of software development called the software engineering life cycle. The traditional 

software engineering life cycle arose out of a need in the 1960s and 1970s to provide 

structure to the development of large software systems. The waterfall life cycle for 

development is depicted in figure 2.5.  

 

Requirements 
analysis 

Architectural 
specif ication 

Detailed 
specif ication 

Implementation 
and unit testing 

Integration and 
testing 

Operation and 
maintenance 

 

Figure 2.5: Activities in the software lifecycle (Dix, 1998). 

 

The software life cycle identifies the activities that occur in software development. 

These activities are ordered in time and appropriate techniques are adopted to carry 

them through. A requirements analysis produces a requirements specification of what 
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the final system will be expected to provide. The architectural specification is a high-

level decomposition of the system into components that are either developed from 

scratch or brought in from existing software. The decomposition allows for isolated 

development of separate components that are later integrated into the final system. 

The detailed specification is a refinement of the original description derived from the 

architectural specification. Usually, there will be more than one way to design these 

refinements within the behavioural constraints identified in the requirements analysis. 

Choosing the best refinement is a trade-off decision-making process based on an 

attempt to satisfy as many of the non-functional system requirements as possible. The 

detailed design is then implemented in an executable programming language. All the 

components are then tested to verify that they perform correctly and effectively. 

Additionally they are tested against HCI principles to validate that they satisfy the 

high-level requirements, which were in the requirements specification. This validation 

against HCI criteria is usually referred to as „usability evaluation‟, or simply 

„evaluation‟. Once enough components have been implemented and individually 

tested, they are integrated as described in the architectural design. The integrated 

system is then subjected to verification and validation testing again. Once the system 

has been finalised, all work on it is considered under the category of maintenance, 

until a new version demands redesign (Newman and Lamming, 1995; Dix, 1998).  

 

Usability evaluation is an engineering process (c.f. ISO DIS 9241-11). This process 

consists of stages that take place alongside the software development stages, and 

feeds back into the software design process as an iterative design-test-redesign 

activity until the goals of the system have been satisfied. Whatever the stage within 
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the software life cycle, the ideal usability evaluation consists of many team-based 

creative instances followed by  

 

Resources

1.

Determine the parameters of

the project

2.

Select the validation scenario

3.

Describe user groups,
tasksand context of use

4.

Determine market and success

factors, quality factors, and

assessment criteria

5.

Select appropriate resources

for the validation

6.

Do the validation

7.

Analyse the validation results

8.

Document and report the results

9.

Archive the validation results for
reuse and integrate data into

reference values

Service or product
development:

Concept phase

Design phase

Prototyping phase

Implementation phase

Product in use

Goals
achieved

?

YesNo

Repeat

User

Validation

Reuse

results

from

previous

projects

Figure 2.6: Structure of a Standard Usability Evaluation Process in: Melchior at al., 

1995). 

 

a progressive improvement and retesting of the design. This process needs to be 

structured and well documented, to ensure the quality, utility and pertinence of the 
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collected results. This documentation also allows for comparisons over several stages 

of evaluations and pooling of the results for future reference, and finally, it can be 

used to control the general cost-effectiveness of the usability activities themselves. 

Figure 2.6 illustrates the structure of an ideal usability evaluation process (Melchior et 

al., 1995). 

 

Figure 2.6 shows only the most important connections between stages. The thick lines 

indicate the routine sequence between the nine stages of the user validation process. 

If, at the end of a validation process (stage 8), it is obvious that the results from user 

validation do not meet the validation criteria, then the system ought to be redesigned 

based on the reported validation results, and the improved system ought to be 

validated again (repeating stage 5 to 8) and the previously produced report extended 

with the new validation results. It has to be noted that many alternative paths through 

the process model can be assumed and are possible. The user validation process 

model does not describe a static process, but rather a flexible process. It is 

incorporated at any time in the development process, where information about user 

validation is needed. User validation is a demonstration of user acceptance of the 

application and a demonstration of a positive cost/benefit ratio of the application for 

the user compared to other solutions. Especially for the development of basic new 

technologies, such as CVEs, the demonstration of user acceptance and superiority of 

the pilot over alternative solutions is essential for decisions on further and future 

development, and correspondingly funding and investments. The objective is to 

demonstrate as convincingly as possible that the application does indeed do what it 

promised to do, and that it offers advantages as compared to relevant other, and 
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possibly competitive solutions. This requires a number of activities that can be 

summarised as follows: 

 

- Identifying the quality factors to be measured (validation criteria). 

- Defining the quality factors in terms of measurable quantities (acceptable 

limits of validation criteria). 

- Selecting corresponding measurement methods (design of the experiment). 

- Establishing realistic conditions for use (correct control of experimental 

conditions). 

- Selecting subjects from the intended user group (random choice from the 

group of representative end-users, controlling for background and gender). 

- Designing an appropriate test plan (complete strategy, documented). 

 

The choice and use of validation criteria for interactive systems are much debated 

topics, because it is generally preferable to use methods that yield precise and clearly 

defined data, so that generalisable, replicable and comparable knowledge is gained, 

This knowledge is than summarised for greater understanding of the precise nature of 

the validation criteria, and as reference values for the evolution of the application and 

for further new development in the future. Thus, in order to be able to collect precise 

and clearly defined data the quality factors, or validation criteria must be carefully 

chosen. Especially for new technologies, such as CVEs, it will be difficult to predict 

which validation criteria will measure usability. In order to establish the validation 

criteria for a pioneering system, it is advisable to clarify: 

 

- The goal of the usability evaluation (2.4.2.1); 
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- The place of usability within the overall criteria of acceptability of a system 

(2.4.2.2); 

- How the validation criteria to test usability are to be decided on (2.4.2.3). 

 

Next, the goal of the usability evaluation for CVEs is described (section 2.4.2.1), the 

place of usability in the overall acceptance of CVE systems is discussed (section 

2.4.2.2), and finally is it critically examined how this information applies to the 

choice of validation criteria for CVEs (section 2.4.2.3). Creating new validation 

criteria is subject to systematic scientific methodology, which is further explained in 

section 2.15 (Systematic Scientific Approach to Usability Engineering for CVEs). 

 

2.4.2.1 Goal of Usability Evaluation for CVEs 

As a general rule, the role of usability evaluation is to test the system, to ensure that it 

actually behaves as expected, meets the requirements of the user, and usability 

breakdown problems are rectified. Traditionally, usability evaluation has a number of 

main goals (Preece, 1994; Newman and Lamming, 1995; Dix, 1998, Buie, 1999):  

 

- Support the development process;  

- Assess the extent of the system‟s functionality;  

- Assess the effect the interface has on the user;  

- Identify any specific problems with the system. 

 

CVE usability evaluation would typically look to satisfy the same goals. The usability 

evaluation of a CVE ideally follows the standard usability engineering process, as 

evoked in section 2.1.4. The standard usability engineering process is designed to 
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support the development process, using the user requirements specification to assess 

the extent of the system‟s functionality, the effect the interface has on the user, and 

identifies any specific problems with the system. Although each development project 

is different, the approaches, methods, techniques and activities used during the 

standard usability engineering process to achieve usability, are clearly defined and 

well documented. It is important to note that usability evaluation of CVE technology 

challenges these standard practises, because of the changes of the interaction 

paradigm from 2D to 3D, as evoked in section 2.7.  

 

2.4.2.2 Place of Usability in Overall Acceptability of CVEs 

Traditionally, usability is seen as one element in the overall acceptability of the 

system (Nielsen, 1993). A systems‟ acceptability can be subdivided into social 

acceptability and practical acceptability (see figure 2.7).  

System 
acceptability 

Social 
acceptability 

Practical 
acceptability 

Usefulness 

Cost 

Compatibility 

Reliability 

Etc. 

Utility 

Usability 

Easy to learn 

Efficiency of use 

Easy to 
remember 

Few errors 

Subjectively 
pleasing 

 

Figure 2.7: The place of usability in the overall acceptability of a system (Nielsen, 

1993).  
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Social acceptability refers to how well a system is received by the users, including 

society, and if and how society as a whole can benefit from it. The latter being one of 

the direct concerns of the EC (Chester, 1998), as evoked in section 2.2. Looking at the 

diagram in figure 2.7, it may be obvious that social acceptability is not automatically a 

topic that will be evaluated during a standard “Usability Evaluation”. For this reason 

the COVEN project (funded by the EC) included three social acceptability tests; one 

at the beginning of the project, to establish the needs and requirements for a travel 

information CVE from the Travel Agents‟ point of view; and the other two at the end 

of the project, from the consumer point of view (one in the laboratory, one in situ in a 

tourist agency). 

 

Usability is generally considered to belong in the category of practical acceptability, 

which has to do with usefulness, cost considerations, compatibility, reliability, etc. 

Usefulness refers to whether the system can be used to achieve its desired goals. 

Usefulness can be divided into utility and usability. Utility refers to how well a 

system allows the user to fulfil their task(s), a concern traditionally addressed using a 

variety of methods, including ethno-methodological observations of work practise.  

 

Usability refers to how well users can interact with the system to reach their goals. 

Thus, precisely defining and documenting how a user is to be supported, to reach 

what particular goal, is the first task in establishing validation criteria, before the 

usability of any particular system can be measured. A user requirements analysis is 

aimed at facilitating this stage, by guiding the researcher through a process of defining 

and documenting the user context, the user‟s goals with the application, the scenario 
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of use, and type of support needed for the user from the application in order to reach 

their goals satisfactorily. 

 

2.4.2.3 Standard Usability Validation Criteria 

A number of general factors have been consistently found to influence the usability of 

interactive systems (Nielsen, 1993). These can be divided into five categories:  

 

- Easy to learn; 

- Efficiency of use; 

- Easy to remember; 

- Subjectively pleasing; 

- Low error rate. 

  

These five categories typically form the basis for the validation criteria against which 

the usability of interactive systems is tested. For instance, it is calculated how many 

errors users make, or how much time it takes for them to complete their task. In such 

a case „error rate‟ and „time taken‟ are the validation criteria used to measure the 

usability of the system. Reduction of error rate and time taken to perform the task, is 

thus expected to show an improvement of the usability of a system. 

 

It is to be expected that CVEs would also suffer from low usability if the above five 

factors are not taken into account in the design of the CVE. However, there may well 

be additional validation criteria for CVEs, or they might be slightly different from 

those found for previous interactive systems, since we are now dealing with the 

usability of three dimensional, multi-user collaboration systems. For instance, one of 
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the first new concepts to emerge from VR technology developments has been the 

issues surrounding cognitive immersion and the sense of presence in the virtual world. 

In order to be able to answer the question of how much the sense of presence is 

essential to the usability of a VE system, presence first needed to be defined, explored 

and expressed in terms of validation criteria to be able to measure the degree of 

presence. Only after being able to measure the degree of presence is it possible to 

systematically assess the effect of presence on usability. Validation criteria for open 

issues are traditionally created using a systematic scientific approach (Groot, 1969). 

This approach is discussed in the next section (2.4.3). 

 

2.4.3 Systematic Scientific Approach to Usability Engineering for CVEs 

There are two important reasons to adopt a systematic scientific approach to CVE 

usability:  

 

- To support the usability engineering process in defining the precise 

measurement criteria for CVE usability. 

- To better understand what constitutes CVE usability and how this related to 

standard usability knowledge. 

 

How good any system is, depends partly on the quality of the system hardware, partly 

on the functionality of the software, partly on the user interface of the system, and 

partly on the user‟s experience, preferences, and specific needs. This creates a 

potentially confusing set of possible factors influencing usability, which can only be 

analysed effectively if a systematic, scientific approach is used. Additionally, if in the 

process of evaluation a potential usability problem is diagnosed, it is important to 
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understand the reason for the problem and not just detect the symptom (Dix, 1998). 

For this reason we need to empirically test hypotheses about the usability of CVE 

design features. By comparing differences in usability between different CVE design 

solutions, we can refine our understanding of what constitutes usability for CVEs. The 

empirical cycle of scientific inquiry consists of five phases (Groot, 1969):  

 

Phase 1: ‘Observation’. Collection and grouping of empirical materials. 

Phase 2: ‘Induction’. Formulation of (tentative) hypotheses. 

Phase 3: ‘Deduction’. Derivation of specific consequences from the hypotheses, 

in the form of testable predictions. 

Phase 4: ‘Testing’. Testing of the hypotheses against new empirical materials, 

by way of checking whether or not the predictions are fulfilled. 

Phase 5: ‘Evaluation’. Evaluation of the outcome of the testing procedure with 

respect to the hypotheses or theories stated, as well as with a view to 

subsequent, continued, or related investigations.  

 

Our understanding of the usability validation criteria for CVEs is so limited that it 

could be said that CVE research and development is still in phase 1 of the empirical 

cycle. This means that we need to observe users in action, in order to achieve an 

understanding of their real task as it takes place. Based on this understanding we can 

than proceed to formulate tentative hypotheses about what usability for CVEs 

specifically means. These tentative hypotheses then, can be tested and refined until 

they allow the precise measurement of CVE usability and establish ideal usability 

solutions for each particular type of CVE. The observations should not leave anything 

out, because the aim is to create a true overview of “how the new technology 

influences what”. A complete, or ecologically valid, picture of the whole technology 
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and not just the hardware/software, takes into account the designers, the design task, 

the evaluation task and the evaluators, as well as the end users using the technology as 

part of a set of tools to get their work done. 

 

To define a validation criterion a precise specification is created of measurable 

behavioural objectives that must be met in order to pass judgment. What has to be 

specified is, how the software is to be judged as „good‟ or „bad‟. This typically refers 

to the goal of the system: Can the user reach their goal using the system?; How do 

users reach their goal using the system?; How well can users reach their goal using 

the system?; How can the system be improved to help users reach their goal more 

satisfactorily?; etc. This type of information is typically expressed in the user 

requirements specification. The author presents the general goal of CVE applications 

below (see Table 2.5). Although the specific goal for particular VE applications may 

differ, there are a few general goals all (C)VEs have in common, because they all aim 

at creating a usable, credible virtual world for the user. 

 

Goal of VE Application Description 

Presence All VEs try to convey the illusion of a place 

where users feel present.  

Navigation in 3D All VEs must allow the user to navigate through 

the virtual spaces. 

3D Object Interaction All VEs must allow the users to interact with the 

objects in the virtual space. 

Coordinating Multiple Tasks All VEs must allow users to coordinate multiple 

tasks inside the VE and outside the VE. 

Collaboration in CVEs In the case of multi-user VEs or CVEs, users must 

be able to collaborate with each other. 

Tab. 2.5: General goals for VE applications which can be used to define usability 

criteria. 
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Numerous researchers have defined validation criteria to measure the success of VE 

applications to satisfy one or more of the general goals mentioned in table 2.5, and 

several researchers have attempted to summarize these findings in order to enter stage 

4 and 5 of the empirical cycle.  

 

Thus, the most general goal for a user using a collaborative virtual system to receive 

support for usability, can be defined as follows: 

 

- To be provided with information about who does what, where and to whom, 

sufficient to understand and contribute to the goings on, compared to real life 

collaboration.  

 

Chapter 3 critically examines human behaviour during collaboration, to assess the 

type of support users need from the CVE application more precisely. Additionally, 

there is some well-documented understanding on how users perceive their goals and 

the means to satisfy these goals, discussed in the next section (2.4.3.1). 

 

2.4.3.1 Conceptual Models for CVEs 

How well a user can reach their goal depends on how well they can perform their 

task, which in turn depends on how well they understand their task and on how well 

they can perform this task within the constraints from design of the system. Models 

help to formulate the constraints within which design takes place. As Donald Norman 

put it: “The problem is to design the system so that, first it follows a consistent, 

coherent conceptualisation – a design model – and, second, so that the user can 

develop a mental model of that system – a user model – consistent with the design 
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model” (Norman and Draper, 1986). Users have conceptual models of their task and 

of the application, and equally, designers use conceptual models to define the task that 

needs to be supported by the system, and models to conceptualise and view the 

system that they are creating. Figure 2.8 shows a general cooperative work model, 

which could also be said to depict CVE mediated user-user interaction. 

 

P 

A 

P 
direct communication 

  control and 

feedback 

  

feedthrough 

deixis 

understanding 

artefact of work 

P = participant  

Figure 2.8: Model of cooperative work (from: Dix, 1998). 

 

According to this model (Dix, 1998), the elements of cooperative work are defined as 

two or more participants and the things upon which they work. They are engaged in a 

common task, and interact with various objects, some of which are physically shared 

(being manipulated by two or more participants at the same time), and all objects are 

additionally seen as shared in the sense that they contribute to the cooperative 

purpose. The participants communicate with each other during the work, denoted by 

the arrow between them. Part of the purpose of the communication is to establish a 
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common understanding of the task and its progress between the participants. 

Participants might be using shared artefacts during their work; the two-way arrows 

between the participants and their artefacts of work denote this. The two-way flow 

represents the flow of control activities from the participants upon the artefacts, and 

the feedback, which should come from the artefacts to the participants. Additionally, 

the feedback of one participants‟ manipulation of shared objects as observed by the 

other participants is represented as feedthrough. Finally, a distinction is made between 

direct communication between the participants, and communication about the task, 

which refers to the artefacts used as part of that task; denoted by the dotted line 

representing the type of communication; speech elements called deictic or indexical 

(further discussed in Chapter3) common to cooperative work.  

 

Based on this model (figure 2.8), the definition of the most general goal of a CVE to 

support usability can be stated as follows:  

 

- The CVE should afford the perception of the functionality of the spaces, the 

objects, ones own virtual embodiment, and that of other participants, 

sufficiently for a typical user to achieve effective interaction and 

communication between themselves and the other CVE participants, and with 

the CVE.  

 

This definition has helped to state the roles of different elements of the CVE 

experience, refining the first definition in the beginning of section 2.15. Analysing the 

cooperative work model and applying it to CVE has shown that he CVE participants 

should be enabled to conduct deictic communication about the shared objects between 
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participants, perceive feedback from object to interacting participant, and perceive 

feedthrough from manipulated object to the other participants. In short, CVE usability 

needs to take into account the user dealing with the immediate CVE interface, the user 

dealing with other users and objects inside the CVE, and the feedback of their own, 

other users actions and system actions on the objects and users in and with the CVE. 

 

2.4.4 Discussion 

Usability research for CVEs needs to take place on a very broad scale. It is not quite 

known what the usability factors are for CVEs specifically. In order to establish which 

factors are elements of usability for CVEs we need to make predictions about the 

outcome of design solutions for the usability of the system. These predictions are then 

rephrased as hypothesis so that they can be tested in an empirical manner. These 

theories allow us to predict will happen when people use a system and they allow us 

to guide the design; subsequently the design can be tested again, the theories refined, 

and the design updated.  

 

2.5 CVE Applications in Context 

This section consists of a review of three existing CVEs: MASSIVE, dVS, and DIVE, 

at the time this thesis was written. It has to be noted that there are other CVEs in 

existence as well as these, but these are the three major ones that the author is most 

familiar with. This review is by no means exhaustive in its description of all 

interactive features of each CVE, however it provides a short general description of 

each CVE, accompanied by images that provide impressions of the CVE space, CVE 

objects, and virtual user embodiments. Finally, a discussion is provided on the impact 

on CVE usability of the general limitations of embodiments, and the general 
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limitations of 2D mouse vs. 3D interaction that currently seem common to CVEs. The 

aim of this section is to give an impression of the type of CVEs designs that exist 

today, describe the type of embodiments and interaction solutions that are employed, 

and discuss the open issues as regards this state-of-the-art design for the usability 

evaluation of CVE technology.  

 

The next section presents a framework developed during the COVEN project to 

compare CVE product features (2.5.1), followed by sections that describe which 

Massive (2.5.2), dVS (2.5.3), and DIVE (2.5.4), and a discussion in which it is 

described what the limitations are within which current CVE usability evaluation 

takes place (2.5.5). 

 

2.5.1 Functional Comparison 

During the COVEN project a rough comparison was made of the CVEs that were 

used during the project (DIVE and dVS) and other products (however, MASSIVE 

was not incorporated in this comparison). Nineteen CVEs are compared to each other 

by using a list of 12 features; each feature is given a score on a scale form 0 (absent or 

null) to 5 (very good). Although the numbers are not based on actual measurements, 

they do represent the collective, subjective opinion of the COVEN partners as 

expressed at the time. These results are shown in table 2.6. The COVEN partners 

scored each CVE on set of CVE functional features (see table 2.7). These features are: 

subjective views; high-level behaviour; rendering; rendering scalability; network 

scalability; web interface; audio communication; video communication; virtual 

humans; simulated crowds; spoken language; and usability guidelines (table 2.7 

provides the definition of the terms).  
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Product Origin 

Platform Features 

Unix PC Mac 

Sub 
jec 
tive 

Views 

High-
Level 

Behavior 

Renderin
g 

Renderin
g 

Scalabilit
y 

Net 
work 

Scalabilit
y 

Web 
Inter 
face 

Audio 
Comm 

Video 
Comm 

Virtual 
Humans 

Simulate
d 

Crowds 

Spoken 
Languag

e 

Usabili
ty 

Guideli
nes 

MASSIVE 
Uni of 
Nottingham X X   - - - - - - - - - - - - 

DIVE SICS X X   5 5 4 5 5 5 5 5 5 5 4 5 

dVS Division X X   3 5 5 3 5 3 5 1 5 0 0 5 
ActiveWorld
s 

ActiveWorld
s   X X 2 3 4 2 4 1 0 0 5 0 0 1 

Blaxxun 
Blaxxun 
Interactives   X   2 5 4 1 3 5 5 5 4 0 0 1 

Community 
Place Sony   X   0 4 4   4 5 0 0 3 0 0   

Interspace 
NTT 
Software   X   2 5 3 1 2 5 5 5 2 0 0 1 

TalkWorld 
Etchinghill 
Studios   X   2 3 3 2 4 1 5 0 3 0 0 0 

ParaWorld ParaWorld   X   0 3 2 1 2 0 0 0 2 0 0 0 

V-Chat Microsoft   X   0 0 2 0 1 0 5 0 1 0 0 0 
Worlds 
Chat Worlds Inc.   X   4 5 4 1 4 3 0 0 5 0 0 0 

2nd World Canal Plus   X   2 5 4 1 3 5 5 5 4 0 0 1 

Pueblo Chaco   X   0 0 1 0 4 0 0 0 0 0 0 0 

VNET S. White       
Unable to load the 
software                   

CoSpace AT&T      
Web site 
temporarily closed           

TeCo3D 

Mannheim 
U./Siemens 
T.C. X X X 3 5 4 ? 4 5 5 5 ? 0 0 0 

JavaMoo 
Bang 
Space Inc. X X   

Unable to load the 
software           

DeepMatrix Geometrek   X   2 5 4 1 3 5 5 5 4 2 0 1 

SCOL 
Cryo 
OnLine   X X 5 3 2 2 4 3 5 0 1 1 0 0 

Table 2.6: Comparison of CVE platforms that were used during the project (DIVE 

and dVS) vs. other products. 

 

Not every feature has a very obvious direct bearing on the usability of CVEs, however 

effectively each of the features plays a role in creating a credible, usable CVE. 

 

Feature Definition 

Subjective Views Ability to manage a separate view adapted to each participant. 

High-level behaviour Ability to produce complex interactions with the world components. 

Rendering Quality of rendering with reference to the hardware facilities available. 

Rendering scalability Ability to support environments that are geometrically both large in 
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extent and deep in details. 

Network scalability Ability to support a large number of active processes in a highly 

interactive environment and over network with varying latency and 

bandwidth configuration. 

Web interface Level of integration with the web (URLs, documents, etc.). 

Audio communication Ability to provide an audio channel to participants and quality of the 

communication. 

Video communication Ability to provide an video channel to participants and quality of the 

communication. 

Virtual humans Precision and rendering of human avatars. 

Simulated crowds Precision and rendering of crowds. 

Spoken language Ability to provide a natural spoken language interface and width of 

covered speech. 

Usability guidelines Presence and quality of usability guidelines for CVEs. 

Table 2.7: Definitions of the list of features that was used by COVEN partners to 

score the CVE platforms. 

 

2.5.2 Massive 

MASSIVE (Model, Architecture and System for Spatial Interaction in Virtual 

Environments) (Greenhalgh and Benford, 1995; Greenhalgh, 1999), is a CVE 

developed to run across the Internet. Its graphics have therefore been kept as simple 

as possible. It has a 3D graphical window, a 2D icon based interface control window, 

a plan view in which users can find distant participants and other objects, and users 

are able to communicate via an audio link. The primary goal of MASSIVE was to 

create and demonstrate scalability for CVEs, introducing the “Spatial Model of 

Interaction”. The spatial model of interaction governs participants‟ awareness of the 

virtual world and its contents. It controls the degree of visible detail and audio volume 
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of distant sources. MASSIVE consists of multiple worlds, linked by portals that 

enable participants to move between worlds. 

 

 

Figure 2.9: MASSIVE-1 screenshot showing “blockie” embodiments around a 

meeting table. 

 

Figure 2.10: MASSIVE-2 screenshot showing more humanoid virtual embodiments in 

front of a “white-board”. 

 

Users have a virtual embodiment that allows for the expression of a few gestures by 

changing the position of the arms, and a few cartoon style expressions such as a 

question mark above the head. Users can put the embodiment into a sleep position to 

signify the fact that they are not controlling their embodiment because they are 

elsewhere engaged. Users can change their viewpoint from normal view, to various 

out of body views and birds eye views. Users are able to interact with objects within 
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the CVE, by clicking on them and moving them. See figure 2.9 and 2.10 for images of 

MASSIVE, and two different stages in the development of virtual embodiments. 

 

2.5.3 DVS 

DVS/dVISE Virtual reality System  (Rygol, Ghee, Naughton-Green, and Harvey, 

1996), is a CVE developed to run across high-performance networks, such as Ethernet 

and ISDN. Consequently the design of this CVE has not been particularly driven by 

concerns about limiting bandwidth usage. This stance may possibly have had support 

from the original design choice of the system, which is based on distributed 

architecture technology (multiple processors supporting a single system). The 

application consists of a graphical window (dVS), an interface control window to 

select different modes of navigation and interaction, and several toolboxes (dVISE) 

which allow users to add to and change the contents of the VE.  

 

 

Figure 2.11: dVS. 

 

The system does not include an audio or text communication medium and users 

typically used the telephone or separate, external text or audio-networked program to 
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communicate, although the system has audio built in to broadcast VE sounds. User 

representation ranges from a virtual hand representation to a full body representation 

in the virtual space and they can select and interact with objects. Objects that are 

interacted with typically „highlight‟ their outlines in response to being selected by a 

user, but no other feedback on who is the user interacting on the object is available. 

The system provides three modes of interaction: Desktop non-immersive (using a 2D 

mouse), Semi-immersive (using 3D peripherals such as a Spaceball, or tracked 3D 

mouse and polarising spectacles to get a 3D desktop view), and Immersive mode 

(using a tracked Head Mounted Display (HMD) and 3D peripherals to interact with 

the VE).  

 

2.5.4 DIVE 

DIVE has been developed by the Swedish Institute of Computer Science (SICS) 

(Frecon and Stenius, 1999).  

 

 

Figure 2.12: DIVE. 
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Users can individualise their embodiments, and they can fly, rotate, and wander 

around. They navigate with the mouse. Worlds are connected via portals. Users can 

select objects, and manipulate them, and collaboration tools are provided, such as 

whiteboards and web-browsers. DIVE has many 2D pull-down menu‟s full of 

commands that help the users in their tasks, such as “find other users” automatically, 

set point of origin to automatically get back to, etc. DIVE has gone through many 

iterations of development and has subsequently evolved over the years. The source 

code for DIVE is freely available, and DIVE users can in principle extend the world 

using a programming language called tcl/Tk.  

 

2.5.5 Discussion 

Typical virtual embodiments are limited in their interactive abilities. For instance 

apart from the hand and head no other body part can be moved independently. Typical 

objects in CVEs are limited in their functionality; some are there for decoration 

purposes only; some are there but do not possess all the functions their real world 

counterparts possess, or are used differently. Typical CVE spaces are unbounded, 

unless walls, a floor and ceiling have been specifically designed.  

 

2.6 Conclusions 

There are a number of general limitations to the current design of CVEs, which will 

most likely lower the usability scores on any evaluation immediately. The most 

obvious limitations are caused by the CVE spaces, objects, including the virtual 

embodiments, and the 3D interaction. The CVE spaces, objects, embodiments and 3D 

interaction are all represented in a simplified manner, which means that there are 

fewer cues for understanding the constraints and affordances for action. For instance, 
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way finding is notoriously difficult in a VE due to the limited field of view and other 

factors. Selection and manipulation are often difficult due to the fact that the input 

device does not afford the same manipulation as a real hand or tool would, and the 

output device does not provide the same feedback as its real world counterpart would 

do. It is by no means clear yet what type and how to provide feedback and 

feedthrough to all participants in a shared 3D environment about actions taken by the 

participants. The delay caused by the network on the data exchange between each 

geographically remote CVE participant is another aspect that will affect the design 

choices and the usability evaluation outcome. It is more than likely that usability 

problems of this nature will be uncovered by usability testing. This thesis attempts to 

document these types of problems alongside the other findings. 


